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Abstract

We establish that the relevant geometric data for the target space description of world sheet topological defects are submanifolds
– which we call bi-branes – in the product M1 × M2 of the two target spaces involved. Very much like branes, they are equipped
with a vector bundle, which in backgrounds with non-trivial B-field is actually a twisted vector bundle. We explain how to define
Wess–Zumino terms in the presence of bi-branes and discuss the fusion of bi-branes.

In the case of WZW theories, symmetry preserving bi-branes are shown to be biconjugacy classes. The algebra of functions on
a biconjugacy class is shown to be related, in the limit of large level, to the partition function for defect fields. We finally indicate
how the Verlinde algebra arises in the fusion of WZW bi-branes.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Sigma models have been a significant source of examples for two-dimensional conformal field theories. They allow
one to relate geometric structure on target space to field theoretic quantities in the conformal field theory. This has
provided much insight, not least for the interpretation of string theory. A particularly important observation has been
the relationship between (conformal) world sheet boundary conditions and D-branes, which are, in their simplest
incarnation, submanifolds of the target space equipped with a vector bundle.

The target space of a sigma model has, at least, the structure of a (pseudo-)Riemannian manifold. Further structure
on the target space is introduced by the presence of the tachyon and of the antisymmetric Kalb–Ramond B-field.
While we will ignore the tachyon in the present article, we do take the B-field into account, wherever this is possible
without rendering the exposition too technical. The appropriate geometric structure on target space needed to describe
a non-trivial B-field background is a hermitian bundle gerbe, and for a D-brane the vector bundle gets replaced by a
twisted vector bundle, i.e. by a gerbe module for the restriction of the gerbe to the world volume of the brane.
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Apart from conformally invariant boundary conditions, two-dimensional conformal field theories admit another,
equally natural, structure: topological defect lines. These objects are familiar from statistical mechanics. Take, for
example, the lattice version of the Ising model: changing the coupling along all bonds that cross a specified line from
ferromagnetic to antiferromagnetic produces a defect. Due to the Z2-gauge invariance of the Ising model, the position
of this defect can be moved around, as long as we do not cross the site of a spin that appears in the correlator of
interest. If we do cross such a site, we are forced to change the sign of the spin variable. The defect thus comes with a
well-defined rule for passing insertions in the bulk through the defect line.

Moreover, in the Ising model a pair of two such defect lines which run close to each other can be eliminated by
a gauge transformation; more generally, two defects can be joined to a single defect, which gives rise to fusion rules
between topological defects. A similar phenomenon arises when we take boundary conditions into account: In the
Ising model, a given boundary condition, say “spin up”, combined with a parallel antiferromagnetic defect line can
be replaced by the boundary condition “spin down”. More generally, there is a mixed fusion by which topological
defects act on conformal boundary conditions.

Like in the case of boundary conditions, in the CFT that is obtained in the continuum limit this structure can be
expected to result in defect lines along which correlation functions of bulk fields can have a branch-cut like behaviour.
At least for rational conformal field theories, such defect lines appear naturally in algebraic approaches to CFT [26,
17]; in the TFT approach to RCFT correlators [17] a complete description of such defects is available [13,14]. The
TFT approach allows one, in particular, to compute the partition functions of bulk and boundary fields, and of defect
fields (fields living on a defect line that can change the type of defect), as well as the fusion of two defects and of a
defect with a conformal boundary condition.

More specifically, suppose a collection of conformal field theories is compatible in the sense that they share a chiral
symmetry algebra, including at least the Virasoro algebra. Note that in order for two conformal field theories to be
compatible, they must in particular have the same Virasoro anomaly. Standard examples of compatible theories are the
WZW models based on SU(2) and on SO(3) with the same value of the level. We label the members of a compatible
family of conformal field theories by indices {A1, A2, . . .}. There then exist (oriented) defects which separate the
conformal field theory of type A1 present on a region of world sheet to their left from a conformal field theory of type
A2 to their right hand side. Such a topological defect will be denoted by A1

B A2
. Then the fusion of defects associates

with two defects A1
B A2

and A2
B A3

a defect of type A1
B A3

:

A1
B A3

= A1
B A2

?A2 A2
B A3

. (1)

The second type of fusion associates with a defect A1
B A2

and boundary condition A2
N for the theory of type A2 a

boundary condition A1
N for the theory of type A1,

A1
N = A1

B A2
?A2 A2

N . (2)

In the framework of [17,14], the labels {A1, A2, . . .} correspond to certain algebras in the representation category of
the chiral symmetry algebra. These algebras encode in particular the partition functions, including a modular invariant
bulk partition function and partition functions for boundary and defect fields. Branes are described by modules, and
defects by bimodules, of these algebras; the fusion operation ?A is realized as the tensor product over A.

It has also been understood [13,14] that topological defects encode information both on internal symmetries and
on dualities of a conformal field theory; this includes in particular T-dualities.

In view of the relevance of target space structures for string theoretic interpretations, it is natural to ask whether a
target space description exists for conformal defects as well. The answer to this question is the primary result of the
present paper.

Suppose we are given two compatible conformal field theories, corresponding to target spaces M1 and M2. We
show that conformal defects correspond to submanifolds of the product M1 × M2. Furthermore, very much in the
same way as for a brane, this submanifold has to be endowed with a vector bundle (again, in the presence of a non-
trivial B-field this is a twisted vector bundle). For theories based on current algebras – compactified free bosons and
Wess–Zumino–Witten theories – we study the relevant submanifolds in detail. For simplicity, in this paper we restrict
our attention to the cases of a single compactified free boson and of the WZW model based on a compact, connected
and simply connected Lie group. It is clear, however, that when combined with standard techniques developed for
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D-branes, the concepts presented here allow us to extend our results to more general classes of conformal field
theories, in particular to WZW theories on non-simply connected groups, coset theories, theories of several free
bosons compactified on a torus, and orbifolds of such theories.

In the rest of this paper we will proceed as follows. Inspired by the calculation of the scattering of closed string
states in the presence of D-branes [7,8], in Section 2 we analyze scattering processes in the presence of defect lines,
considering theories with current symmetries and defects of type A B A. In these cases we have M1 = M2 = M , and
the target space M is a compact connected Lie group. In the simply connected case the relevant submanifold of M ×M
turns out to be a biconjugacy class, i.e. is of the form

Bh1,h2 :=

{
(g1, g2) ∈ G × G | ∃ x, y ∈ G : g1 = xh1 y−1, g2 = xh2 y−1

}
. (3)

This is analogous to the role played by conjugacy classes [2,8,27] in the description of boundary conditions.
Correspondingly, the so-called 2-characters

χ
(2)
λ : G × G → C

(g1, g2) 7→ trHλ(g1g−1
2 )

(4)

take the role that characters play in the theory of branes. We will therefore refer to the target space objects that describe
defects as bi-branes.

It should be appreciated that while the multiplication of the Lie group G enters in the specific form of bi-branes
for WZW theories, the description of defects in general does not require a multiplication on target space. Rather,
the relevant structure for bi-branes separating theories with target spaces M1 and M2 are suitable submanifolds of
M1 × M2.

In Section 3 we discuss the intrinsic geometry of biconjugacy classes and relate the algebra of functions on a
biconjugacy class to the algebra of defect fields; we can then exhibit a 2-form on the biconjugacy class that trivializes
the difference of the 3-form field strengths on the two backgrounds involved. In Section 4 we show how these data
can be employed to construct a Wess–Zumino term in situations in which the topologies of the target space and the
bi-brane are particularly simple; a proof that the so constructed Wess–Zumino term is well-defined, as well as the
description of the Wess–Zumino term for more general target spaces and/or bi-branes, is relegated to appendices.
Finally, Section 5 is devoted to aspects of the fusion of two bi-branes and of the fusion of a bi-brane to a brane; we
provide in particular an argument for how the Verlinde algebra arises as the fusion algebra of symmetry preserving
bi-branes on simply connected Lie groups. A short outlook is supplied in Section 6.

2. Scattering of bulk fields in the backgrounds of defects

One rationale for assigning a target space geometry to a conformal field theory is to study the scattering of bulk
fields. This is based on the general idea (see e.g. [15]) that (a subspace of) the space of bulk fields can be identified
with a truncation and deformation of the algebra of functions on the target space. In the case of branes this amounts,
in tree level approximation to string theory scattering amplitudes, to computing the two-point functions of bulk fields
on a disk with given boundary condition. By factorization to a three-point function on the sphere and a one-point
function on the disk, this can be reduced [7,8] to the computation of one-point functions of bulk fields on the disk.

Here we are interested in probing the target space geometry for a topological defect B on the world sheet, again
using the scattering of bulk fields. In tree level approximation we have to consider the two-point functions of bulk
fields on a world sheet that is a sphere S2 containing a closed defect line B. Without loss of generality, we can take
the defect line to be along the equator of the sphere. If both bulk field insertions are on the same hemisphere, then
by factorization we just obtain the correlator in the absence of a defect, multiplied by the quantum dimension of the
defect [10]. To get information on the relevant geometry of the target space, we must thus consider the situation with
the two bulk insertions on different hemispheres, i.e. on different sides of the defect line.

For theories with current symmetry we will use the following notation. By g we denote a finite-dimensional
reductive complex Lie algebra. Special cases of particular interest are those where g is simple, and the abelian Lie
algebra u(1) ⊕ · · · ⊕ u(1). By G we denote the simplest compact Lie group with Lie algebra (the compact real form
of) g. Thus for semisimple g, G is the connected simply connected compact Lie group with Lie algebra g, while for
reductive Lie algebras we take in addition the direct product with d copies of U (1), with d the dimension of the center
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of g. For concreteness, the reader might wish to keep in mind the two special cases g = u(1) and g = su(2), with
G = U (1) and G = SU(2), respectively.

By g we denote the non-trivial central extension of the loop algebra of g; if g is simple, g is an untwisted affine Lie
algebra, while for g abelian we have a direct sum of Heisenberg algebras with identified centers. We fix the value of
the level k for each simple ideal of g; the irreducible highest weight representations are then classified by the set Pk of
dominant integral weights λ at level k. Analogously the irreducible finite-dimensional representations of g are labeled
by the set P of dominant integral g-weights. In particular, for g = u(1), Fock spaces are labeled by momentum, so that
Pk = P = R, while for g = su(2), at positive integral level k the relevant sets are Pk = {0, 1, . . . , k} and P = Z≥0.

Thus for any λ ∈ P we have a finite-dimensional g-module Hλ (for g = su(2) its dimension is λ + 1). We may as
well regard Hλ as a G-module; its character is

χλ : G → C×

g 7→ trHλ Rλ(g).
(5)

Via taking the horizontal part of an affine weight, we can regard Pk as a subset of P . The irreducible g-module
with highest weight λ ∈ Pk is infinite-dimensional, with finite-dimensional homogeneous subspaces; we identify
its zero-grade subspace with the finite-dimensional g-module Hλ. Finally, by λ+ we denote the highest weight of
the representation that is conjugate to Hλ. For g = u(1), this is the representation with opposite u(1)-charge; for
g = su(2), every representation is self-conjugate.

Returning to our preceding discussion, we now consider the correlation function on S2 of two bulk fields labeled
by g ⊕ g-modules Hλ � Hλ+ and Hµ � Hµ+ inserted, respectively, at the north and south poles of S2, with a defect B
along the equator. Further, we restrict our attention to the so-called Cardy case, in which the bulk partition function is
given by charge conjugation, boundary conditions are labeled by primary fields and the annulus coefficients are fusion
rules [6]. In the Cardy case also the topological defects are labeled by the same set Pk as the left- and right-moving
parts of the bulk fields. In the sequel we abbreviate the defect B = Bα with α ∈ Pk as α.

By holomorphic factorization, any correlator on S2 is an element of the space of conformal blocks on the double
cover of S2, which consists of the disjoint union of two copies of CP1 with opposite orientation. For the correlator
Dα;λµ of two bulk fields on S2 with a defect line α, we thus deal with a four-point block Dλµ on CP1

t CP1, which is
an element of the algebraic dual of the tensor product vector space Hλ ⊗ Hλ+ ⊗ Hµ ⊗ Hµ+ . Like in [8] we consider
the particular correlator

Gabcd
α;λµ(v ⊗ ṽ ⊗ w ⊗ w̃) := Dα;λµ(J a

−1v ⊗ J b
−1ṽ ⊗ J c

−1w ⊗ J d
−1w̃), (6)

where by J a
n , with a a labeling a basis of g, we denote the modes of the currents J a(z) (for the corresponding basis

elements of g we write J̄ a).
In order for the correlator (6) to be non-zero we need µ = λ+. The states v and w̃ are then vectors in the g-module

Hλ, while ṽ and w are states in the g-module Hλ+ , with these g-modules regarded as the zero-grade subspaces of the
corresponding g-modules.

To determine the correlation function (6), we first study the four-point conformal blocks Dλλ+ on CP1
tCP1. They

decompose into a tensor product of two-point blocks on the two copies of CP1, Dλλ+ = Fλ ⊗ Fλ+ . The chiral Ward
identities for left and right movers read

Dλλ+ ◦
(
J a
−n ⊗ 1 ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ J a

n ⊗ 1
)

= 0 (7)

and

Dλλ+ ◦
(
1 ⊗ J a

−n ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ 1 ⊗ J a
n

)
= 0, (8)

respectively, for all a = 1, 2, . . . , dim(g) and all n ∈ Z. Together with the highest weight properties of w and w̃ and
with the commutation relations of g, the Ward identities imply

Dλλ+(J a
−1v ⊗ J b

−1ṽ ⊗ J c
−1w ⊗ J d

−1w̃) = Dλλ+(v ⊗ ṽ ⊗ J a
1 J c

−1w ⊗ J b
1 J d

−1w̃)

= Fλ(v ⊗ [J a
1 , J c

−1]w)Fλ+(ṽ ⊗ [J b
1 , J d

−1]w̃)

=
[
Fλ(v ⊗ [ J̄ a, J̄ c

]w) + kκac Fλ(v ⊗ w)
]
·

[
Fλ+(ṽ ⊗ [ J̄ b, J̄ d

]w̃) + kκbd Fλ+(ṽ ⊗ w̃)
]
. (9)
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We expect that a direct contact to the geometry of compact Lie groups exists in the weak coupling limit, i.e. in the limit
of large level k. Accordingly we only keep those terms in (9) which are of leading order in k; they are proportional to
the Killing form of g and correspond to graviton and dilaton scattering; if g is abelian, they are the only terms present.
In this limit we obtain the expression

k2κacκbd Fλ(v ⊗ w)Fλ+(ṽ ⊗ w̃) =: k2κacκbd D∞

λλ+(v ⊗ ṽ ⊗ w ⊗ w̃). (10)

As in [8], at this point we invoke the Peter–Weyl theorem, so as to identify the space
⊕

λ∈Pk
Hλ � Hλ+ with a

subspace of the space F(G) of functions on the Lie group G. This way, equation (10) allows us to associate with a
defect a linear function onF(G), i.e. a distribution. Before computing this distribution, which essentially amounts to a
Fourier transformation, we notice that while boundary conditions give a distribution on G, defects give a distribution
on the product manifold G × G. As a consequence, defects will be associated with submanifolds of G × G. This
also fits nicely with the philosophy behind the so-called folding trick [30], by which a conformal defect separating
two conformal field theories CA1 and CA2 with the same conformal anomaly is related to a conformally invariant
boundary condition in the product theory CA1 × CA2 .1 It should be kept in mind, however, that in this article we are
only concerned with topological defects, which constitute a specific subclass of conformal defects.

Let us now Fourier transform the result (10) according to the rules of [8], to obtain a distribution on G × G. We
first note that the Fourier transformation of a linear form D on the space

⊕
λ,µ∈P Hλ � Hλ+ � Hµ � Hµ+ reads

D(v ⊗ ṽ ⊗ w ⊗ w̃) =

∫
G×G

dg dg′ D̃(g, g′)∗
∑

λ,µ∈P

〈ṽ ⊗ w̃| Rλ(g) ⊗ Rµ(g′) |v ⊗ w〉

=

∫
G

dg
∑
λ∈P

〈ṽ| Rλ(g) |v〉

∫
G

dg′
∑
µ∈P

〈w̃| Rµ(g′) |w〉 D̃(g, g′)∗, (11)

and that its inverse is given by

D̃(g, g′) =

∑
µ1;i, j

∑
µ2;k,l

Nµ1 Nµ2 D(vi ⊗ ṽ j ⊗ wk ⊗ w̃l) · 〈ṽ j |Rµ1(g) |vi 〉 〈w̃l | Rµ2(g
′) |wk〉 , (12)

with {vi } a basis of Hµ1 and {ṽi } the dual basis of Hµ+

1
, and analogously for wk and w̃k . Here the normalization factors

Nµi are given by Nµ =
√

|Hµ|/|G| with |Hµ| the dimension of Hµ and |G| the volume of G.2

For the functions (10) of interest to us this prescription yields

D̃∞

λλ+(g, g′) =

∑
µ1,µ2∈P

Nµ1 Nµ2

∑
i, j,k,l

〈
ṽ j
∣∣ Rµ1(g) |vi 〉 · Fλ(vi ⊗ vk) 〈ṽl | Rµ2(g

′) |vk〉 Fλ+(ṽ j ⊗ ṽl)

= N 2
λ

∑
i, j,k,l

〈
ṽ j
∣∣ Rλ(g) |vi 〉 Fλ(vi ⊗ vk) 〈ṽl | Rλ+(g′) |vk〉 Fλ+(ṽ j ⊗ ṽl). (13)

By the identities Rλ+(g) = (Rλ(g−1))t, where the superscript indicates the transpose matrix, and Fλ(vi ⊗ vk) = δi,k ,
this reduces to

D̃∞

λλ+(g, g′) = N 2
λ

∑
i, j

(Rλ(g))
j
i

(
Rλ(g

′−1
)
)i

j
= N 2

λχλ(gg′−1
). (14)

Here 2-characters of G pop up. 2-characters are functions on the Cartesian product G × G of a group with itself.
They first appeared in [12] in the expansion of group determinants. As compared to characters, they contain more
information about the group than characters; e.g. in contrast to characters, they allow one to determine whether a
representation is real or pseudo-real. (Still, 2-characters and characters do not determine a group up to isomorphism.
A surprisingly recent result [22] states that a finite group is determined by its 1-, 2- and 3-characters.)

1 Indeed, from the way a biconjugacy class can be related to a permutation-twisted conjugacy class in G × G (as e.g. considered in [11]) one can
deduce information about a possible target space implementation of the folding trick. We thank Thomas Quella for a discussion on this point.

2 Note that, like e.g. in [3,19], we do not take the volume of G to be normalized to 1. Rather, the ‘physical’ radius of G should be
√

kα′, i.e. |G|

is proportional to (kα′)dim(G)/2.
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Next we use the results of the TFT approach (following the lines of Section 4 of [18]) to express the correlation
functions in terms of conformal blocks: we have

Dα;λλ+ =
Sλ,α

S0,λ

Dλλ+ = χα(hλ)
∗ Dλλ+ =

S0,α

S0,λ

χλ(hα)∗ Dλλ+ , (15)

where like in [8] we introduced the group element

hα := exp(2π iŷα), (16)

with ŷα the Cartan subalgebra element dual to the weight

yα :=
α + ρ

k + g∨
∈ g∗

0. (17)

(ρ denotes the Weyl vector and g∨ the dual Coxeter number of g.) For the sum

Gabcd
α :=

∑
λ∈Pk

Gabcd
α;λλ+ (18)

of two-point correlators, which is the analogue of a boundary state, we thus obtain, at large k,

G̃abcd
α (g, g′) = k2κacκbd

∑
λ∈Pk

N 2
λ

S0,α

S0,λ

χλ(hα)∗χλ(gg′−1
). (19)

Furthermore, using that at large k the quantum dimension S0,λ/S0,0 approaches the ordinary dimension |Hλ| and Pk
can be replaced by P , this reduces to

G̃abcd
α (g, g′) = k2κacκbd |Hα|

|G|

∑
λ∈P

χλ(hα)∗χλ(gg′−1
). (20)

Up to normalization this is a delta distribution on the conjugacy class Cα ≡ Chα of G:∑
λ∈P

χλ(hα)∗χλ(gg′−1
) =

|G|

|Cα|
δCα

(gg′−1
). (21)

Thus we finally arrive at

G̃abcd
α (g, g′)

k→∞ // k2κacκbd |Hα|

|Cα|
δCα

(gg′−1). (22)

In short, for given topological defect α, in the large level limit the analogue (18) of the boundary state is concentrated
on those pairs (g, g′) ∈ G × G whose product gg′−1 lies in Cα .

3. The world volume of WZW bi-branes

3.1. Biconjugacy classes

According to the scattering calculation in the previous section, the geometric object in G × G that is relevant
for the description of a defect α is the set of those points (g1, g2) of G × G such that g1g−1

2 lies in the conjugacy
class Cα of G. These subsets of G × G are actually submanifolds; we wish to describe them in more detail. To this
end we introduce the following notion: For a compact connected Lie group G and elements h1, h2 ∈ G we call the
submanifold

Bh1,h2 :=

{
(g1, g2) ∈ G × G | ∃x1, x2 ∈ G : g1 = x1h1x−1

2 , g2 = x1h2x−1
2

}
(23)

of G × G the biconjugacy class of the pair (h1, h2).
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Biconjugacy classes inherit from the diagonal left and diagonal right actions of G on G×G two commuting actions
of G. For the defects that we are describing here, these two G-actions correspond to the two independent preserved
current symmetries.

Obviously, 2-characters are constant on biconjugacy classes. In fact, very much like the characters of irreducible G-
representations form a natural basis for the functions on the space of conjugacy classes, the 2-characters of irreducible
representations form a basis for the space of functions on biconjugacy classes.

Next we observe that the smooth map

µ̃ : G × G → G
(g1, g2) 7→ g1g−1

2
(24)

intertwines the diagonal left and diagonal right action of G on G × G and the adjoint and trivial actions of G on
itself, respectively. Put differently, µ̃ defines the structure of a trivializable G-equivariant principal G-bundle over
G. Indeed, the G-action on the fibers is by diagonal right multiplication, so that the G-equivariant diffeomorphism
t : (g1, g2) 7→ (g1g2, g2) furnishes a global trivialization, where the trivial G-bundle p1 : G × G → G over G
projects on the first component.

It now follows that a biconjugacy class in G × G is the preimage of a conjugacy class in G under the projection µ̃

defined in (24):

Bh1,h2 = µ̃−1(Ch1h−1
2

) =

{
(g1, g2) ∈ G × G | g1g−1

2 ∈ Ch1h−1
2

}
; (25)

in particular,

Bh1,h2 = Bh1h−1
2 ,e. (26)

To establish the relation (25), we observe that for every element (g1, g2) ∈ Bh1,h2 we have g1 = x1h1x−1
2 and

g2 = x1h2x−1
2 for some x1.x2 ∈ G, and hence g1g−1

2 = x1h1h−1
2 x−1

1 ∈ Ch1h−1
2

. Conversely, given (g1, g2) ∈ G × G

such that there exists some x ∈ G with xg1g−1
2 x−1

= h1h−1
2 , we set x1 := x−1 and x2 := g−1

2 x−1h2 and obtain
g1 = x1h1x−1

2 and g2 = x1h2x−1
2 , which shows that (g1, g2) ∈ Bh1,h2 .

To conclude, biconjugacy classes have the topology of a direct product of G with a conjugacy class. Thus for
simply connected groups, they are in particular simply connected. The scattering of closed string states in WZW
theories detects bi-branes corresponding to biconjugacy classes for which h1h−1

2 is a regular element of G; this
closely parallels the findings of [8] for branes.

3.2. World volume quantization

As further evidence for the relation between biconjugacy classes and WZW defects, we will now establish that the
defect fields associated with a topological defect furnish a quantization of the space of functions on a biconjugacy
class. Note that besides bulk fields there also exist other types of fields in the presence of defects [14]: disorder fields,
at which defect lines start or end, and defect fields, which live on a defect line and can change the type of the defect.
There is a distinguished type of defect, acting as a unit with respect to fusion, called the invisible defect. Across this
defect, every bulk field is smooth. Disorder fields are in fact special defect fields: those changing the invisible defect
to some other defect or vice versa. Similarly, bulk fields can be regarded as defect fields preserving the invisible defect
and thus as special disorder fields.

Since there are two commuting actions of G on the world volume of a biconjugacy class, the space F(Bh1,h2) has
the structure of a G ×G-module. This can be compared with the situation for conjugacy classes, which describe WZW
branes. A conjugacy class C carries a natural G-action, the adjoint action, which turns the space of F(C) of functions
on C into a G-module. As pointed out in [8], only regular conjugacy classes are relevant to the situation of interest to
us. A regular conjugacy class is isomorphic to G/T , with T a maximal torus of G, and there is an isomorphism

F(G/T ) ∼=

⊕
λ∈P

multλ(0)Hλ (27)

of G-modules, where multλ(0) denotes the multiplicity of the weight 0 in the highest weight g-module Hλ.
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This G-module structure is related, in the large level limit, to the G-module structure of a subset of the space of
boundary fields for the corresponding WZW brane. Note that in the present context we should take the large-k limit
in a way such that the geometric conjugacy class is kept fixed. As a consequence, the weight labeling the boundary
condition depends on the level. More specifically, just like in [8] we must consider weights α = α(k) such that

α0 :=
α(k) + ρ

k + g∨
(28)

is constant. The large-k limit of the WZW annulus coefficients Aβ
λα for the case of simply connected G reads [8]

lim
k→∞

(k)Aβ(k)

λα(k) = δα0,β0multλ(0). (29)

This result can be interpreted as follows. In the large level limit, only open strings starting and ending at the same
brane survive. As a G-module, they have the algebra of functions on the brane as a limit; this substantiates the idea
that the space of open strings constitutes a quantization of the world volume of the brane.

For bi-branes, we can obtain an analogous result by using G × G-modules in place of G-modules. To describe the
intrinsic geometry of the bi-brane Bh1,h2 , with h1 and h2 regular elements of G, we first note that the bijection

(p1 × µ̃) : Bh1,h2 → G × Ch1h−1
2

(g1, g2) 7→ (g1, g1g−1
2 )

(30)

intertwines two pairs of G-actions: first, the diagonal left action of G on Bh1,h2 , i.e. ρ(h)((g1, g2)) = (hg1, hg2), is
intertwined with G acting from the left on itself and by the adjoint action on Ch1h−1

2
; and second, the diagonal right

action on Bh1,h2 is intertwined with the right action on G and the trivial action on Ch1h−1
2

. The G ×G-module structure

of the space of functions on Bh1,h2 now follows easily; we have

F(Bh1,h2)
∼= F(G × Ch1h−1

2
) ∼= F(G) ⊗ F(Ch1h−1

2
). (31)

Further, by the Peter–Weyl theorem we have F(G) ∼=
⊕

µ∈P Hµ � Hµ+ , while the G-module structure of F(Ch1h−1
2

)

is given by (27). Thus after decomposing the tensor product we obtain

F(B) ∼=

⊕
λ,µ∈P

(∑
ν∈P

N λ

νµ+multν(0)

)
Hλ � Hµ, (32)

where N λ

νµ+ is the multiplicity of the irreducible g-module Hλ in the tensor product Hν ⊗ Hµ+ .

The decomposition (32) has to be compared with the multiplicities Zαβ
µν for defect fields with chiral labels µ, ν

that change a defect α to a defect β. A simple calculation in the TFT approach to rational conformal field theories
(compare Section 5.10 of [17]) shows that, in the Cardy case, this multiplicity is an ordinary fusion rule. Accordingly,
we have at level k

(k)Zα(k)β(k)
λµ =

(k)N β(k)

λµα(k) ≡

∑
ν∈Pk

(k)N ν
λµ

(k)N β(k)

να(k) . (33)

The large-k limit of the two factors in this result follows easily: the fusion rules (k)N ν
λµ tend to tensor product

multiplicities, while the limit of the second factor is the same as the one computed above for the annulus coefficients
(which for the Cardy case coincide with ordinary fusion rules). Thus we find

lim
k→∞

(k)Zα(k)β(k)
λµ = δα0,β0

∑
ν∈P

N ν

λµmultν(0)

= δα0,β0

∑
ν∈P

N λ

νµ+multν(0), (34)

where in the second equality the charge conjugation properties of the tensor product multiplicities are used. This is in
full agreement with the G × G-module structure (32) of the space F(B) of functions on the bi-brane. Analogously, as
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for branes, this substantiates the idea that the algebra of defect fields can be regarded as a quantization of the space of
functions on the bi-brane.

3.3. Trivialization of the H-field

As is well known [29], conformal invariance for theories with non-abelian currents requires a non-trivial B-field
background. While the B-field is defined only locally, its curvature H is a globally defined 3-form. One important
property of branes is the fact that the restriction of H to the corresponding submanifolds is exact. For symmetric
branes in the WZW model based on g at level k, the curvature is the 3-form

H =
k

6
〈θ ∧ [θ ∧ θ ]〉, (35)

where we have denoted by θ the left-invariant Maurer–Cartan form on G, which is a g-valued 1-form, and by 〈·, ·〉 the
Killing form on g. Restricted to a conjugacy class Ch , the 3-form H can be written as the derivative of a G-invariant
2-form ωh ,

H |Ch = dωh . (36)

We will now see that bi-branes have properties that generalize this behaviour.
Consider again the map µ̃ whose restriction maps the bi-brane Bh1,h2 to the conjugacy class Ch1h−1

2
. We introduce

the 2-form

$h1,h2 := µ̃∗ωh1h−1
2

−
k

2
〈p∗

1θ ∧ p∗

2θ〉 (37)

on Bh1,h2 , where pi , i = 1, 2, is the projection from G × G → G on its i th factor, and both summands are restricted
to the submanifold Bh1,h2 of G ×G. From the intertwining properties of µ̃ it follows that the 2-form $ is bi-invariant.
Analogously to the equality (36) on the world volume of a brane, on the world volume Bh1,h2 of the bi-brane the
identity

p∗

1 H = p∗

2 H + d$h1,h2 (38)

holds; in other words: on Bh1,h2 , the difference of the H -fields of the two target spaces involved is exact and equals
the derivative of the 2-form $h1,h2 .

To establish the identity (38), we first recall the relation

µ̃∗ H = p∗

1 H − p∗

2 H +
k

2
d〈p∗

1θ ∧ p∗

2θ〉 (39)

(compare e.g. the proof of Proposition 3.2 of [1]) which in the derivation of the Polyakov–Wiegmann formula accounts
for the correct behaviour of the Wess–Zumino term. On the other hand, we find(

µ̃∗ H
)
|Bh1,h2

= µ̃∗(H |C
h1h−1

2

) = µ̃∗(dωh1h−1
2

) = dµ̃∗ωh1h−1
2

; (40)

together with the definition of $h1,h2 the last two equations imply (38).
At this point it is worth mentioning the notion of a quasi-Hamiltonian G-space which has been introduced in [1].

As shown in [1], both conjugacy classes and the “double” G × G are examples of such spaces. However, the reader
should be warned that, while the case of conjugacy classes is directly relevant for the discussion of branes, the double
as considered in [1] is endowed with a G × G-action that does not restrict to the bi-brane submanifolds.

4. The Wess–Zumino term in the presence of defects

Having identified a 2-form $ on the bi-brane that trivializes the restriction of the difference of the H -fields, we
are in a position to study the Wess–Zumino term for situations with particularly simple topology. The analysis closely
parallels the one in [9]. As in the case of branes, a general and more satisfactory analysis must be based on the notion
of hermitian bundle gerbes. A first discussion of these issues can be found in Appendix B.
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To attain a situation with sufficiently simple topology, we restrict our attention in the sequel to 2-connected target
spaces M1 and M2, i.e. besides being connected and simply connected, the manifolds Mi also satisfy π2(Mi ) = 0
(this includes in particular compact connected and simply connected simple Lie groups). Because a bundle gerbe over
a 2-connected space is completely determined by its curvature, which is a closed 3-form with integral periods, we
may then consider target spaces M1 and M2 with closed integral 3-forms H1 and H2.

A similar phenomenon occurs for bi-branes if we make the additional assumption that the world volume of
a bi-brane is connected and simply connected: the 2-form $ that trivializes the difference of the 3-forms is a
sufficient substitute for the structure that is needed in the general case as described in Appendix B. Note that all
these assumptions are in particular met for WZW bi-branes of simply connected compact Lie groups.

Under these assumptions, we arrive at the following simplified definition of a bi-brane: A simply connected
M1–M2-bi-brane between 2-connected target spaces M1 and M2 with 3-forms Hi ∈ Ω3(Mi ), i = 1, 2, is a simply
connected submanifold Q of M1 × M2 together with a 2-form $ ∈ Ω2(Q) such that

p∗

1 H |Q = p∗

2 H |Q + d$. (41)

The classical Wess–Zumino–Witten model is a theory of maps from a two-dimensional world sheet to a target
space. The space of maps has to be chosen in a way conforming with the correlator of interest. For example, for world
sheets with non-empty boundary it is required that the boundary of the world sheet is mapped into the world volume
of a WZW brane. Here our aim is to describe correlators with defect lines. We merely consider the simplest situation:
a closed oriented world sheet Σ with an embedded oriented circle S ⊂ Σ that separates the world sheet into two
components, Σ = Σ1 ∪S Σ2, which we assume to inherit the orientation of Σ . Without loss of generality we assume
∂Σ1 = S and ∂Σ2 = S as equalities of oriented manifolds, where S is the manifold S with opposite orientation.

We assume that the defect separates regions that support conformally invariant sigma models with target spaces
M1 and M2 and consider pairs of maps

φi : Σi → Mi (42)

such that the image of the combined map

φS : S → M1 × M2
s 7→ (φ1(s), φ2(s))

(43)

takes its values in the submanifold Q.
We next wish to find the Wess–Zumino part of the action. First, since Q is simply connected, there exists a two-

dimensional oriented submanifold D of Q with ∂ D = φS(S). We can glue the images of this disk under the projections
pi : M1 × M2 → Mi along their boundaries on the images φi (Σi ) of the world sheets, and obtain two-dimensional
oriented closed submanifolds. Because we have required π2(Mi ) = (0), we can fill those to three-dimensional oriented
submanifolds Bi ⊂ Mi such that

∂ B1 = φ1(Σ1) ∪ p1(D) and ∂ B2 = φ2(Σ2) ∪ p2(D). (44)

Equipped with such choices of submanifolds, we define

S[φ1, φ2] :=

∫
B1

H1 +

∫
B2

H2 +

∫
D

$. (45)

Note that superficially the expression (45) depends on the choices of the manifolds B1, B2 and D. However, the
ambiguities are integers, so that the exponential of (45) is actually well-defined. This can be shown with the help
of a homology theory based on two manifolds M1 and M2 and a submanifold Q ⊂ M1 × M2, which we set up in
Appendix A. For the dual cohomology theory a theorem of de Rham type holds; it allows us to express a cohomology
class with values in R as a triple of differential forms. The triple (H1, H2, $) then furnishes an example of a cocycle
in this cohomology theory. As we show in Appendix A, the ambiguities of (45) arise as the pairing of the cohomology
class of (H1, H2, $) with a cycle in homology that results from different choices of the submanifolds D, B1 and B2.
We then show that if the cocycle (H1, H2, $) corresponds to a cohomology class with values in Z – we shall call
such a triple integral – the ambiguities of (45) are integers.
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This is analogous to the discussion of the Wess–Zumino term in the presence of branes [9]: in that case the relative
cohomology of the pair (M, Q) is relevant, where Q is the world volume of the brane. The 3-form H and the 2-form ω

on Q define a cocycle in the relative cohomology with values in R, and the Wess–Zumino term is the pairing of (H, ω)

with a certain cycle. Its well-definedness imposes the condition that (H, ω) is integral, i.e. lies in the cohomology
with values in Z. As in the case of branes, the integrality condition described above imposes severe restrictions on
the biconjugacy classes that can describe defect lines. In fact, only those biconjugacy classes which are of the form
µ̃−1(C) qualify, where C ⊂ G is a suitable conjugacy class, namely one that supports a gerbe module which leads to
a boundary condition preserving all chiral currents at level k. It should be appreciated, though, that the 2-form on the
biconjugacy class differs from the pull-back of the 2-form on the conjugacy class, and in fact there is no sensible way
in which a gerbe bimodule can be seen as the pull-back of a gerbe module.

In Appendix B we show how one can drop the restrictions π2(Mi ) = π1(Mi ) = 0 on the topology of the
background and π1(Q) = 0 on the topology of the bi-brane world volume. In the absence of these conditions, it is
not enough any longer to work with the 2-form $ on the bi-brane and the curvature 3-forms Hi on the backgrounds.
Rather, connection-type data must be taken into account. This can be achieved using hermitian bundle gerbes, together
with a new notion to be introduced in Appendix B: gerbe bimodules. We refer to the same appendix for the definition
of a Wess–Zumino term in this general situation. To show that the proposed Wess–Zumino term restores the conformal
symmetry of correlators with defects is beyond the scope of this article.

5. Fusion of bi-branes

As pointed out in the introduction, there are two natural notions of fusion involving bi-branes: the fusion of two
bi-branes, and the fusion of a bi-brane and a brane to a brane. In both cases, the fusion of elementary (bi-)branes
yields, in general, a superposition of elementary (bi-)branes.

As has been seen in the algebraic approach, for WZW defects that preserve all current symmetries there exists a
natural notion of duality. It can be characterized by the property that the fusion of a bi-brane and its dual contains the
special bi-brane which with respect to fusion acts as the identity. Ignoring the shift in the location of bi-branes by the
Weyl vector, this is the bi-brane whose world volume is the biconjugacy class B(e,e), i.e. the diagonal G ⊂ G × G.
Upon quantization, the functions on this special bi-brane are related to ordinary bulk fields, rather than general defect
fields.

By invoking this duality, instead of working with the fusion rules

Bα ? Bβ =

∑
γ

N γ
αβBγ (46)

of bi-branes we sometimes consider the multiplicities

Nαβγ := N γ ∨

αβ . (47)

These structure constants are, in general, not symmetric; from the results of the algebraic approach, however, we
expect them to be invariant under cyclic permutations. The algebraic approach also predicts that in the case of compact
connected and simply connected Lie groups, the constants N γ

αβ are just the ordinary fusion multiplicities arising in
the chiral theory, which satisfy the Verlinde formula.

5.1. World volume fusion

We first consider the effect of fusion on world volumes. In this context, the notation becomes more transparent
when considering at once bi-branes describing defects that separate different target spaces M1 and M2.

The action of correspondences on sheaves suggests considering the following prescription: For the fusion of an
M1–M2-bi-brane with world volume B ⊆ M1 × M2 and an M2-brane with world volume V ⊆ M2 one should
consider

B ? V := p1

(
B ∩ p−1

2 (V )
)

(48)

with pi the i th projection M1 × M2 → Mi . In general B ? V is only a subset, rather than a submanifold, of M1.
On a heuristic level one would expect, however, that the quantization of the branes [3] selects a finite superposition
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of branes, which then should reproduce the results obtained in the TFT approach. The quantization conditions on the
positions of branes require additional geometric structure on the branes, namely twisted vector bundles, and involve
a subtle interplay of this structure with the background B-field. We will exhibit in examples how the required finite
superposition of branes or bi-branes arises after geometric quantization.

Similarly, the fusion of an M1–M2-bi-brane B with an M2–M3-bi-brane B ′ uses projections pi j from the triple
product M1 × M2 × M3 to the twofold products Mi × M j :

B ? B ′
:= p13

(
p−1

12 (B) ∩ p−1
23 (B ′)

)
. (49)

Again the question of quantization should be addressed. This issue turns out to be largely parallel to what happens in
the mixed fusion of bi-branes to branes, and accordingly we will concentrate on the case of mixed fusion.

5.2. Bi-branes of the compactified free boson at fixed radius

We consider a free boson compactified on a circle S1
R of radius R and restrict ourselves, for the moment, to defects

separating two world sheet regions that support one and the same theory. In this situation, it does no harm to identify
the circle with the Lie group U(1) ∼= {z ∈ C | |z| = 1}.

We consider two types of branes: D0-branes V (0)
x are localized at the position x ∈ R mod 2π RZ. D1-branes, in

contrast, wrap the whole circle. The D1-brane characterized by a Wilson line α ∈ R mod 1
2π R Z will be denoted by

V (1)
α ; the Wilson line describes a flat connection on S1

R .
The world volume of a bi-brane on S1

R is a submanifold of S1
R × S1

R of the form

Bx := {(y, y − x) | y ∈ R mod 2π RZ} (50)

with x ∈ R mod 2π RZ. Bx has the topology of a circle, and according to our general considerations in Appendix B
it must be endowed with a flat connection, i.e. with a Wilson line α. As a consequence, the natural parameters for
bi-branes of a compactified free boson are a pair (x, α) taking values in two dual circles describing a position on S1

and a Wilson line. We will write B(x,α) ≡ (Bx , α) for such bi-branes.
For the fusion of a bi-brane B(x,α) and a D0-brane V (0)

y we have

p−1
2 (V (0)

y ) = {(y′, y) | y′
∈ [0, 2π R)}, Bx ∩ p−1

2 (V (0)
y ) = {(x + y, y)}

and p1

(
Bx ∩ p−1

2 (V (0)
y )

)
= {x + y},

(51)

so that the prescription (48) yields

B(x,α) ? V (0)
y = V (0)

x+y . (52)

Thus the fusion with a defect of type B(x,α) acts on D0-branes as a translation by x in position space.
For the fusion of a bi-brane B(x,α) and a D1-brane V (1)

β , we need to take the flat line bundle on the bi-brane into

account. We first pull back the line bundle on V (1)
β along the projection p2 to a line bundle on S1

R ×S1
R ; then we restrict

it to the world volume Bx of B(x,α) and tensor this restriction with the line bundle on B(x,α) described by the Wilson
line α. This gives a line bundle with Wilson line α + β on the world volume of the bi-brane that can be pushed down
along the projection p1 to a line bundle with the same Wilson line on S1

R . We conclude that

B(x,α) ? V (1)
β = V (1)

α+β . (53)

Thus the fusion with a defect of type B(x,α) acts on D1-branes as a translation by α in the space of Wilson lines.
We can similarly compute the fusion of two bi-branes B(x,α) and B(x ′,α′): we have

p−1
12 (Bx ) = {(y, y − x, y′) | y, y′

∈ [0, 2π R)},

p−1
23 (Bx ′) = {(y, y′, y′

− x ′) | y, y′
∈ [0, 2π R)},

p13

(
p−1

12 (Bx ) ∩ p−1
23 (Bx ′)

)
= {(y, y − x − x ′) | y ∈ [0, 2π R)},

(54)
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so that the position variables of bi-branes add up under fusion. To understand the behaviour of Wilson lines, we take
into account the flat line bundles by pulling them back to S1

R × S1
R × S1

R and tensoring them. Then as in the case of
mixed fusion, the Wilson lines add up. We thus obtain

B(x1,α1) ? B(x2,α2) = B(x1+x2,α1+α2). (55)

Hence we find that both the position and Wilson line variable of bi-branes add up under fusion. This result exactly
matches the fusion of the first set of defects that are derived algebraically in [16]; for these both the left- and
right-moving currents are preserved, J1(z) = J2(z) and J̄1(z̄) = J̄2(z̄), for z a point on the defect line. One can
also consider the case where one or both of the currents are only preserved up to a non-trivial automorphism;
the u(1) current algebra has only a single non-trivial automorphism, acting as J 7→ −J . The simplest case then
turns out to be that both J1(z) = −J2(z) and J̄1(z̄) = − J̄2(z̄); in this case one obtains submanifolds of the form
B = {(y mod 2π RZ, h − y mod 2π RZ)|y ∈ R}. The case of different automorphisms for left movers and right
movers is more subtle; we expect the corresponding bi-branes to fill the whole product space. Also, formula (37)
suggests that the 2-form on the bi-brane should be proportional to ±dθ1 ∧dθ2, with the sign depending on the chirality
on which the non-trivial automorphism acts. These issues will not be addressed in the present paper.

5.3. Bi-branes for the compactified free boson at different radii

We next turn our attention to bi-branes which describe topological defects that separate a region which supports a
boson compactified on a circle of radius R1 from a region supporting a boson compactified at radius R2. We describe
the product space by two coordinates x1 and x2, with xi to be taken modulo 2π Ri Z. The bi-brane world volumes are

Bh := {(y mod 2π R1Z, y − h mod 2π R2Z) | y ∈ R}. (56)

If the ratio R1/R2 is not rational, this set is isomorphic to R and fills S1
R1

× S1
R2

densely. Accordingly there are no
Wilson line variables. The algebraic approach shows that in this situation there is a single defect that preserves all
current symmetries [16]; in particular, h is not a physical parameter.

We thus assume that the ratio of the two radii is rational,

R1/R2 = r/s (57)

with r, s coprime positive integers. The bi-brane world volume then has length 2πs R1 = 2πr R2 and admits a Wilson
line variable, to be taken modulo 1/(2πs R1) = 1/(2πr R2). It wraps s times in the R1-direction; hence the geometric
parameter, when measured on the x2-axis, is reduced to 2π R2/s. Equivalently, it wraps r times in the R1-direction;
hence the geometric parameter, if measured on the x1-axis, is reduced to 2π R1/r . Thus the position parameter is to
be taken modulo 2π R1/r = 2π R2/s.

This should again be compared to the analysis of [16]. In the case at hand two parameters have been found: the
first couples to the sum of left- and right-moving momenta, which by the compatibility of the two radii is required
to be quantized in units of r/R1. This nicely fits the position parameter found above. Similarly, there is a parameter
coupling to winding, i.e. to the difference of left- and right-moving momenta. The latter is quantized in units of s R1,
fitting the quantization of the Wilson lines derived above.

Again one can generalize the analysis to bi-branes that preserve the chiral currents only up to automorphisms. If
the non-trivial automorphism is taken for both chiralities, one expects off-diagonal bi-branes; the discussion of the
parameters largely parallels the one in the preceding paragraphs. In the case of different automorphisms, one expects
bi-branes filling S1

R1
× S1

R2
, provided that the area of the product space is rational in suitable units. For the specific

case R2 = 2/R1 these bi-branes should be related to defects which implement T-duality. In this context, the fact [23]
that the curvature ±dθ1 ∧ dθ2 is of the same form as the curvature of the Poincaré line bundle is highly intriguing. A
careful discussion of this relationship is, again, beyond the scope of the present paper.

5.4. WZW bi-branes

We now turn our attention to bi-branes of WZW models on simply connected compact Lie groups. Here several
new phenomena arise: the position of possible branes and bi-branes is quantized, and multiplicities other than zero
or one are expected from the algebraic approach. In fact, from that approach it is known that for these theories the
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multiplicities appearing in the fusion of bi-branes as well as the mixed fusion of bi-branes and branes are the same as
the chiral fusion multiplicities which are given by the Verlinde formula.

To analyze this issue, it turns out to be convenient to work with fusion coefficients of type Nαβγ ; here α and γ are
group elements characterizing conjugacy classes Cα and Cγ of G, respectively, which support a brane, while β is a
group element characterizing a bi-brane µ̃−1(Cβ) with µ̃ as in (24). In the sequel we assume that all group elements
are regular, i.e. contained in just a single maximal torus of G. We are thus led to consider the subset

Mαβγ := p−1
1 (Cα) ∩ µ̃−1(Cβ) ∩ p−1

2 (Cγ )

= {(g1, g2) ∈ G × G | g1 ∈ Cα, g2 ∈ Cγ , g1g−1
2 ∈ Cβ} (58)

of G × G. This set is equipped with a natural G-action, obtained by combining the adjoint action on g1 and on g2.
Both branes and bi-branes are equipped with 2-forms; as a consequence, Mαβγ comes with a natural 2-form, namely
the sum

ωαβγ := p∗

1ωα

∣∣
Mαβγ

+ p∗

2ωγ

∣∣
Mαβγ

+ $β

∣∣
Mαβγ

(59)

of the restrictions of the three 2-forms p∗

1ωα , p∗

2ωγ and $β .
According to the results obtained in the algebraic approach, this space should be linked to the fusion rules of the

chiral WZW theory at level k. To see how such a relation can exist, we recall that fusion rules are dimensions of
spaces of conformal blocks. The latter can be obtained by geometric quantization from suitable moduli spaces of flat
connections; as such they arise in the quantization of Chern–Simons theories.

The situation relevant for Verlinde multiplicities is given by the three-punctured sphere S2
(3), also known as the ‘pair

of pants’ or trinion. In classical Chern–Simons theory one considers the moduli space of flat connections on S2 whose
monodromy around the three insertion points takes values in conjugacy classes Cα , Cβ and Cγ , respectively. Taking
the monodromies gα ∈ Cα , gβ ∈ Cβ and gγ ∈ Cγ along circles of the same orientation around all three insertions,
the relations in the fundamental group of the trinion impose that gαgβgγ = 1. Since monodromies are defined only
up to simultaneous conjugation, the moduli space that matters in classical Chern–Simons theory is isomorphic to the
quotient Mαβγ /G.

Note that the bounds on the range of bi-branes that appear in the fusion are already present before geometric
quantization. Indeed, the relevant product

Ch ∗ Ch′ := {gg′
|g ∈ Ch, g′

∈ Ch′} (60)

of conjugacy classes has already been considered, for G = SU(2), in [24]. It is convenient to characterize a conjugacy
class of SU(2) by its trace or, equivalently, by the angle θ with

cos θ =
1
2

tr(g), (61)

which takes values θ ∈ [0, π]. One finds (see Proposition 3.1 of [24]) that the (classical) product (60) of the two
conjugacy classes with angles θ, θ ′ is the union of all conjugacy classes with angle θ ′′ in the range

|θ − θ ′
| ≤ θ ′′

≤ min{θ + θ ′, 2π − (θ + θ ′)}. (62)

This already yields the correct upper and lower bounds that appear in the SU(2) fusion rules.
A full understanding of fusion can only be expected after applying geometric quantization to the so obtained

moduli space: this space must be endowed with a 2-form, which is interpreted as the curvature of a line bundle,
and the holomorphic sections of this bundle are what results from geometric quantization. In view of this need for
quantization it is a highly non-trivial observation that the 2-form (59) furnished by the two branes and the bi-brane is
exactly the same as the one which arises3 from classical Chern–Simons theory.

3 We are grateful to Anton Alekseev for information about this 2-form.
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6. Outlook

Our findings naturally admit various extensions and generalizations. For instance, one can impose conservation
of the currents only up to an automorphism of the horizontal Lie algebra, which may be chosen independently for
left- and right-moving degrees of freedom. Also, our methods can be clearly extended to more general classes of
conformal field theories, in particular to WZW models on non-simply connected groups, coset models, as well as to
theories of several free bosons compactified on a torus and to orbifolds thereof, including asymmetric orbifolds such
as lens spaces. Another generalization concerns defects which separate sigma models on two different Lie groups that
share the same Lie algebra.

Furthermore, our results provide independent evidence for the idea that there is an intimate relation between defects
and correspondences. This idea has played a role in a field theoretic realization of the geometric Langlands program
(see Section 6.4 of [25]). It is therefore not unreasonable to expect that defects and, more generally, the algebraic and
categorical structure behind RCFT correlators, will enter in a CFT-inspired approach to the Langlands program.

Finally it could be rewarding to unravel similar structures in lattice models.
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Appendix A. Birelative (co)homology

In this Appendix we discuss the well-definedness of the Wess–Zumino term (45) in the presence of a defect line.
To this end we set up a homology theory based on singular homology, which can be understood as a generalization of
relative homology, and which we will accordingly call birelative homology. The associated cohomology theory with
real coefficients can be identified with a cohomology theory based on differential forms, which we call birelative de
Rham cohomology. These structures enable us to formulate precise conditions under which the Wess–Zumino term
(45) is well-defined up to integers.

Recall that the (singular) homology Hk(M) of a smooth manifold M is the homology of the singular chain complex
with chain groups ∆k(M), consisting of (smooth) k-simplices in M and boundary operator ∂ : ∆k(M) → ∆k−1(M)

(we suppress the index of the boundary operator ∂ , as it can be inferred from the index of the simplex on which it
acts). If Q ⊂ M1 × M2 is a submanifold, we define the kth birelative chain group of the triple (M1, M2, Q) to be

∆k(M1, M2, Q) := ∆k(M1) ⊕ ∆k(M2) ⊕ ∆k−1(Q). (A.1)

Using the projections pi : M1 × M2 → Mi and the inclusion map ι : Q ↪→ M1 × M2, and the induced chain maps
(pi )∗ and ι∗, we define the homomorphism

∂ : ∆k(M1, M2, Q) → ∆k−1(M1, M2, Q)

(σ1, σ2, τ ) 7→ (∂σ1 + (p1)∗ι∗τ, ∂σ2 − (p2)∗ι∗τ, −∂τ).
(A.2)

It is easy to verify that this map satisfies ∂2
= 0, i.e. we have endowed the birelative chain groups with the structure

of a complex. We call its homology groups the birelative homology groups and denote them by Hk(M1, M2, Q).
Explicitly, an element of Hk(M1, M2, Q) is represented by a triple (σ1, σ2, τ ) of chains σi ∈ ∆k(Mi ), i = 1, 2, and a
cycle τ ∈ ∆k−1(Q), such that ∂σ1 = (p1)∗ι∗τ and ∂σ2 = −(p2)∗ι∗τ . For each degree k, the birelative chain group
fits, by definition, into the short exact sequence

0 // ∆k(M1) ⊕ ∆k(M2)
α // ∆k(M1, M2, Q)

β // ∆k−1(Q) // 0, (A.3)
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in which α is the inclusion and β is the projection. These induce a long exact sequence

... // Hk(M1) ⊕ Hk(M2)
ω // Hk(M1, M2, Q) EDBC

GF@A
// Hk−1(Q) // Hk−1(M1) ⊕ Hk−1(M2) // ...

(A.4)

in homology.
To explain the term birelative homology we observe that we have generalized relative homology in the following

sense: if we take M2 = pt , so that we can identify Q with a submanifold of M1, then there is a canonical isomorphism
Hk(M1, pt, Q) → Hk(M1, Q). Here Hk(M1, Q), the relative homology group of M1 with respect to the submanifold
Q, is constructed as the homomorphism [(σ1, σ2, τ )] 7→ [σ1] which can be shown to be an isomorphism by using the
5-lemma (see e.g. [5], Lemma IV.5.10) applied to the exact sequence (A.4) and the corresponding sequence in relative
homology.

Dual to the singular homology groups there are singular cohomology groups, defined to be the cohomology of a
complex whose cochain groups are

∆k(M, R) := Hom(∆k(M), R) (A.5)

for a coefficient ring R, and whose coboundary operator

δ : ∆k(M, R) → ∆k+1(M, R) (A.6)

is given by δϕ(σ ) := ϕ(∂σ) for any (k + 1)-simplex σ in M . There is a canonical pairing

H k(M, R) × Hk(M) → R with ([ϕ], [σ ]) 7→ ϕ(σ), (A.7)

which is easily seen to be well-defined. It is often convenient to recover the cohomology groups with values in the
real numbers in a geometric way, for instance through differential forms. Let us recall how this works. The integrals
of k-forms ϕ ∈ Ω k(M) over k-simplices σ ∈ ∆k(M) define homomorphisms Ψk : Ω k(M) → ∆k(M, R) which, by
Stokes’ theorem, fit together to a chain map. The induced homomorphism

Ψ∗
: H k

dR(M) → H k(M, R) (A.8)

from de Rham cohomology to singular cohomology is an isomorphism, which is known as the de Rham isomorphism
(see e.g. Theorem V.9.1 of [5]).

Analogously, as for ordinary singular cohomology, we can also define birelative cohomology. Thus there are
birelative cochain groups ∆k(M1, M2, Q, R), birelative cohomology groups H k(M1, M2, Q, R), and a canonical
pairing

H k(M1, M2, Q, R) × Hk(M1, M2, Q) → R. (A.9)

Note that because the exact sequence (A.3) splits, the dual sequence

0 // ∆k−1(Q, R) // ∆k(M1, M2, R) // ∆k(M1) ⊕ ∆k(M2)
// 0 (A.10)

is exact, too, and induces a long exact sequence in cohomology. We would like be able to express the birelative
cohomology groups with real coefficients by differential forms in a similar way to how the de Rham isomorphism
does it for ordinary cohomology. To this end we consider the vector spaces

Ω k(M1, M2, Q) := Ω k(M1) ⊕ Ω k(M2) ⊕ Ω k−1(Q) (A.11)

together with the linear maps

d : Ω k(M1, M2, Q) → Ω k+1(M1, M2, Q)

(H1, H2, $) 7→ (dH1, dH2, ι
∗(p∗

1 H1 − p∗

2 H2) − d$).
(A.12)



592 J. Fuchs et al. / Journal of Geometry and Physics 58 (2008) 576–598

This indeed defines a complex:

d2(H1, H2, $) = d(dH1, dH2, ι
∗(p∗

1 H1 − p∗

2 H2) − d$)

= (d2 H1, d2 H2, ι
∗(p∗

1dH1 − p∗

2dH2) − dι∗(p∗

1 H1 − p∗

2 H2) + d2$)

= (0, 0, 0). (A.13)

We call the cohomology of this complex the birelative de Rham cohomology and denote it by H k
dR(M1, M2, Q). By

putting M2 = pt , this is nothing but the relative de Rham cohomology of the map ι : Q → M ; see e.g. I Section 6
of [4].

Notice that a simply connected M1–M2-bi-brane (Q, $) provides us with an element (H1, H2, $) of
Ω3(M1, M2, Q). The condition (41) on the 2-form $ on the bi-brane shows that (H1, H2, $) is closed and thus
defines a class in the birelative de Rham cohomology.

Like the definition of the homomorphism Ψ : Ω k(M) → ∆k(M, R) mentioned above we obtain a natural
homomorphism

Ψbi : Ω k(M1, M2, Q) → ∆k(M1, M2, Q, R) (A.14)

which by definition associates with a triple (H1, H2, $) ∈ Ω k(M1, M2, Q) evaluated on an element (σ1, σ2, τ ) ∈

∆k(M1, M2, Q) the real number

Ψbi(H1, H2, $)(σ1, σ2, τ ) :=

∫
σ1

H1 +

∫
σ2

H2 +

∫
τ

$. (A.15)

The homomorphisms Ψbi fit together to a chain map:

(δΨbi(H1, H2, $))(σ1, σ2, τ ) = Ψbi(H1, H2, $)(∂σ1 + (p1)∗ι∗τ, ∂σ2 − (p2)∗ι∗τ, −∂τ)

=

∫
∂σ1+(p1)∗ι∗τ

H1 +

∫
∂σ2−(p2)∗ι∗τ

H2 +

∫
−∂τ

$

=

∫
σ1

dH1 +

∫
σ2

dH2 +

∫
τ

ι∗(p∗

1 H1 − p∗

2 H2) − d$

= Ψbi(dH1, dH2, ι
∗(p∗

1 H1 − p∗

2 H2) − d$)(σ1, σ2, τ )

= Ψbi(d(H1, H2, $))(σ1, σ2, τ ). (A.16)

We infer that the induced homomorphism

Ψ∗

bi : H k
dR(M1, M2, Q) → H k(M1, M2, Q, R) (A.17)

is an isomorphism, analogously with the de Rham isomorphism. To prove this claim, note that by definition we have
an exact sequence

0 // Ω k−1(Q)
α // Ω k(M1, M2, Q)

β // Ω k(M1) ⊕ Ω k(M2)
// 0, (A.18)

where α($) := (0, 0, $) and β(H1, H2, $) := (H1, H2). It induces a long exact sequence

... // H k−1
dR (Q)

α∗

// H k
dR(M1, M2, Q)

β∗

// H k
dR(M1) ⊕ H k

dR(M2) EDBC
GF@A

// H k
dR(Q) // ...

(A.19)
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in (birelative) de Rham cohomology. Combining with the long exact sequence in birelative cohomology with values
in R, induced by the exact sequence (A.10), we have the following diagram with exact columns:

H k−1
dR (M1) ⊕ H k−1

dR (M2)

��

Ψ∗
⊕Ψ∗

// H k−1(M1, R) ⊕ H k−1(M2, R)

��
H k−1

dR (Q)

��

Ψ∗ // H k−1(Q, R)

��
H k

dR(M1, M2, Q)

��

Ψ∗

bi
// H k(M1, M2, Q, R)

��
H k

dR(M1) ⊕ H k
dR(M2)

��

Ψ∗
⊕Ψ∗ // H k(M1, R) ⊕ H k(M2, R)

��
H k

dR(Q)
Ψ∗

// H k(Q, R)

(A.20)

It is easy to check that all subdiagrams commute, so that the 5-lemma implies that Ψ∗

bi is an isomorphism.
In the same way as for ordinary cohomology, we say that a cocycle in Ω k(M1, M2, Q) is integral iff its class –

identified by Ψ∗

bi with a class in H k(M1, M2, Q, R) – lies in the image of the induced homomorphism

H k(M1, M2, Q, Z) → H k(M1, M2, Q, R). (A.21)

In this case the canonical pairing (A.9) of Ψ∗

bi([H1, H2, $ ]) with any birelative homology class [(σ1, σ2, τ )], which
is given by∫

σ1

H1 +

∫
σ2

H2 +

∫
τ

$, (A.22)

is an integer. Analogously, as for WZW models in the bulk and on the boundary of a world sheet, this notion of integral
classes is essential for achieving the well-definedness of Wess–Zumino terms. We infer the following result:

The Wess–Zumino term S[φ1, φ2] (45) of a simply connected M1–M2-bi-brane (Q, $) is well-defined up to
integers, provided that the class of (H1, H2, $) in the birelative de Rham cohomology group H3

dR(M1, M2, Q) is
integral.

To prove this claim, recall that the definition of S[φ1, φ2] involves choices of submanifolds D of Q and Bi of Mi .
If we represent these submanifolds as singular chains, then

∂ D = φS(S), ∂ B1 = φ1(Σ1) − (p1)∗ D and ∂ B2 = φ2(Σ2) + (p2)∗ D. (A.23)

Consider now different choices D′, B ′

1 and B ′

2, and let τ := D − D′ be a chain in ∆2(Q) and σi := Bi − B ′

i be chains
in ∆3(Mi ). We find

∂τ = 0, ∂σ1 = −(p1)∗τ and ∂σ2 = (p2)∗τ, (A.24)

so that (σ1, σ2, τ ) defines a class in the birelative homology H3(M1, M2, Q). The ambiguities of the Wess–Zumino
term S[φ1, φ2] are thus of the form(∫

B1

H1 +

∫
B2

H2 +

∫
D

$

)
−

(∫
B′

1

H1 +

∫
B′

2

H2 +

∫
D′

$

)
=

∫
σ1

H1 +

∫
σ2

H2 +

∫
τ

$. (A.25)

In view of (A.15) the ambiguities (A.25) are nothing but the pairing of the cycle (σ1, σ2, τ ) with (H1, H2, $). If
(H1, H2, $) is integral, this gives an integer.
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Appendix B. Bundle gerbes and defects

As we have explained in Section 4 it is perfectly accurate to characterize bundle gerbes on 2-connected target
spaces M1 and M2 by their curvature 3-forms H1 and H2. Under this condition, we have defined an M1–M2-bi-brane
to be a simply connected submanifold Q of M1 × M2 together with a 2-form $ on Q that obeys

p∗

1 H |Q = p∗

2 H |Q + d$. (B.1)

In this appendix we generalize this definition to bi-branes between target spaces with are not 2-connected. This makes
it necessary to work with the full structure of a hermitian bundle gerbe. Examples of non-2-connected target spaces
are provided by non-simply connected Lie groups, such as the group SO(4n)/Z2, which admits two non-isomorphic
bundle gerbes with the same curvature 3-form H . At the same time, we drop the restriction on the bi-brane Q of
being simply connected. Examples of non-simply connected bi-branes are provided by certain biconjugacy classes of
non-simply connected Lie groups.

B.1. Gerbe modules

Let us first recall how branes have been understood using bundle gerbes [21,20]. Let G be a bundle gerbe on the
target space M with curvature H . The geometric structure related to a conformal boundary condition consists of a
pair4 (Q, E), with Q a submanifold of M and E a gerbe module for the restriction of G to Q. Such gerbe modules are
vector bundles twisted by the bundle gerbe G. We can view them as bundle gerbe morphisms

E : G|Q → Iω (B.2)

from G|Q to a trivial bundle gerbe Iω given by a 2-form ω on Q [28]. The 2-form ω is called the curvature of the
gerbe module. A necessary condition for the existence of the morphism E is the equality

H |Q = dω (B.3)

on Q. If the submanifold Q is not simply connected, then non-trivial flat line bundles exist. Since gerbe modules
(of equal rank) with the same curvature ω form a torsor over the group of flat line bundles, in this situation non-
isomorphic gerbe modules with the same curvature exist. This happens, for example, for the equatorial conjugacy
class of SO(3), which has the topology of RP2 and thus admits two non-isomorphic flat line bundles, whose action
relates two non-isomorphic gerbe modules.

The arguably most direct way to understand (hermitian) bundle gerbes (with connective structure) is in terms of
their local data: with respect to a good open cover U = {Ui }i∈I of M , a bundle gerbe G can be described by a
collection (gi jk, Ai j , Bi ) of smooth functions gi jk : Ui ∩ U j ∩ Uk → U (1), 1-forms Ai j ∈ Ω1(Ui ∩ U j ) and 2-forms
Bi ∈ Ω2(Ui ) satisfying the cocycle conditions

g−1
jkl · gikl · g−1

i jl · gi jk = 1 on Ui ∩ U j ∩ Uk ∩ Ul ,

−ig−1
i jk dgi jk + A jk − Aik + Ai j = 0 on Ui ∩ U j ∩ Uk,

dAi j − B j + Bi = 0 on Ui ∩ U j .

(B.4)

The curvature of G is the globally defined 3-form H with H |Ui := dBi . For example, the local data of the trivial
bundle gerbe Iω are (1, 0, ω|Ui ∩Q). A rank-n bundle gerbe module E : G|Q → Iω is in this formalism described by a
collection (Gi j ,Πi ) of smooth functions Gi j : Ui ∩U j ∩Q → U (n) and u(n)-valued 1-forms Πi ∈ Ω1(Ui ∩Q)⊗u(n)

which relate the local data of the bundle gerbes G|Q and Iω in the following way:

1 = gi jk · Gik G−1
jk G−1

i j on Q ∩ Ui ∩ U j ∩ Uk,

0 = Ai j + Π j − G−1
i j Πi Gi j − iG−1

i j dGi j on Q ∩ Ui ∩ U j ,

ω = Bi +
1
n

tr(dΠi ) on Q ∩ Ui .

(B.5)

4 But not every such pair corresponds to a conformal boundary condition; there are far more such pairs than conformal boundary conditions.
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Note that the derivative of the last equality reproduces the relation (B.3). Also note that if the bundle gerbe G is itself
trivial, i.e. has local data (1, 0, B|Ui ) for a globally defined Kalb–Ramond field B ∈ Ω2(M), then (Gi j ,Πi ) are the
local data of a rank-n vector bundle over Q with curvature of trace n(ω − B). This explains the terminology “twisted”
vector bundle in the non-trivial case. Finally, notice that if one changes (Gi j ,Πi ) with local data of a non-trivializable
flat vector bundle over the world volume Q of the bi-brane, then one obtains a new bundle gerbe module with the same
curvature. In this way the existence of non-trivial flat vector bundles over Q makes the use of bundle gerbe modules
unavoidable.

In the case of WZW conformal field theories with M = G one considers in particular so-called symmetric
branes, which preserve the current algebra in the presence of boundaries, and thus in particular conformal invariance.
Symmetric D-branes (Q, E) can be characterized by three conditions [20]:

(1) the world volume Q of the brane is a conjugacy class Ch of G;
(2) the local 2-forms dΠi take their values only in the center of the Lie algebra u(n) and can thus be identified with

real 2-forms;
(3) the 2-form ω is fixed to

ω =

〈
θ |Ch

∧
Ad−1

+ 1

Ad−1
− 1

θ |Ch

〉
. (B.6)

The conditions 2 and 3 restrict the choice of the conjugacy class to conjugacy classes that correspond to integrable
highest weights. This amounts in particular to having a finite number of non-intersecting brane world volumes.

B.2. Gerbe bimodules

That bundle gerbe modules are the appropriate structure for branes in the case of non-2-connected target spaces or
non-simply connected supports, together with the folding trick, suggests the corresponding structure as the appropriate
generalization for bi-branes: for bundle gerbes G1 and G2 over M1 and M2, an M1–M2-bi-brane is a submanifold
Q ⊂ M1 × M2 together with a (p∗

1G1)|Q-(p∗

2G2)|Q-bimodule: a bundle gerbe morphism

D : (p∗

1G1)
∣∣
Q → (p∗

2G2)
∣∣
Q ⊗ I$ (B.7)

with $ as in (B.1). Here we shall call the 2-form $ the curvature of the bimodule. This definition is related to the
folding trick in the sense, that – using the appropriate notion of duality for bundle gerbes (see Section 1.4 of [28]) – a
G1–G2-bimodule is the same as a (G1 ⊗ G∗

2 )-module.
To consider a bundle gerbe bimodule D in the local data formalism, let U be a good covering of M1 × M2,

let (gi jk, Ai j , Bi ) be local data of p∗

1G1, and (g′

i jk, A′

i j , B ′

i ) local data of p∗

2G2. Then the bimodule has local data
(Gi j ,Πi ) like for a bundle gerbe module, but now satisfying

g′

i jk = gi jk · Gik G−1
jk G−1

i j on Q ∩ Ui ∩ U j ∩ Uk,

A′

i j = Ai j + Π j − G−1
i j Πi Gi j − iG−1

i j dGi j on Q ∩ Ui ∩ U j ,

B ′

i + $ = Bi +
1
n

tr(dΠi ) on Q ∩ Ui .

(B.8)

Again we make three observations. First, the derivative of the third equality gives Eq. (B.1); second, if both bundle
gerbes p∗

1G1 and p∗

2G2 are trivial, then a bimodule is just a rank-n vector bundle over Q with curvature of trace
n(B ′

− B + $); and third, we can still change the local data (Gi j ,Πi ) with local data of a flat vector bundle over Q
and obtain another bimodule with the same curvature. Such phenomena arise, in particular, for bi-branes for WZW
theories on non-simply connected Lie groups.

B.3. Holonomy in the presence of defects

We have generalized the definition of bi-branes from simply connected bi-branes between 2-connected target spaces
with 3-forms to arbitrary bi-branes between arbitrary target spaces with bundle gerbes. Now we shall generalize the
Wess–Zumino term for bi-branes as given in (45) to the general case as well.
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Let M1 and M2 be smooth manifolds with bundle gerbes G1 and G2 respectively, and let (Q, E) be a bi-brane, i.e. a
submanifold Q of M1 × M2 together with a (p∗

1G1)|Q-(p∗

2G2)|Q-bimodule

D : (p∗

1G1)
∣∣
Q → (p∗

2G2)
∣∣
Q ⊗ I$ (B.9)

with curvature $ . Recall that we defined the Wess–Zumino term for the following situation: a closed oriented
world sheet Σ with an embedded oriented circle S ⊂ Σ , which separates the world sheet into two components,
Σ = Σ1 ∪S Σ2, together with maps φi : Σi → Mi for i = 1, 2 such that the image of the combined map

φS : S → M1 × M2
s 7→ (φ1(s), φ2(s))

(B.10)

is contained in Q. The orientation of Σi is the one inherited from the orientation of Σ , and without loss of generality
we take ∂Σ1 = S and ∂Σ2 = S.

To define the Wess–Zumino term we use the formalism introduced in [28], which emphasizes the role of morphisms
between bundle gerbes, in particular between trivial bundle gerbes. According to [28], equivalence classes of
morphisms A : Iρ1 → Iρ2 are in natural bijection with equivalence classes of hermitian vector bundles E with
connection whose curvature satisfies

1
n

tr(curv(E)) = ρ2 − ρ1, (B.11)

with n the rank of E . We write Bun(A) for the vector bundle corresponding to the morphism A. This assignment has
three important properties [28]:

(1) if the morphism A is invertible, then the vector bundle Bun(A) is of rank one, i.e. a line bundle; furthermore

Bun(A−1) = Bun(A)∗; (B.12)

(2) it is compatible with the composition of morphisms,

Bun(A′
◦A) = Bun(A) ⊗ Bun(A′) and Bun(idIρ

) = 1; (B.13)

(3) it is compatible with tensor products,

Bun(A′
⊗A) = Bun(A) ⊗ Bun(A′). (B.14)

As an illustration, consider a manifold M with two bundle gerbes G1 and G2, and a G1–G2-bimoduleD : G1 → G2⊗Iω.
Suppose we have trivializations of each of the bundle gerbes G1 and G2, i.e. bundle gerbe isomorphisms Ti : Gi → Iρi .
By composition, we obtain a bundle gerbe morphism

D̃ := (T2 ⊗ idIω
) ◦D ◦ T −1

1 : Iρ1 → Iρ2+ω. (B.15)

It corresponds to a vector bundle E := Bun(D̃) over M . Summarizing, a gerbe bimodule together with trivializations
gives a hermitian vector bundle on M with connection. Let us discuss how the vector bundle E depends on the choice
of the trivializations. If T ′

1 and T ′

2 are two different choices of trivializations and D̃′ is the corresponding morphism
(B.15), we obtain the line bundles

Ti := Bun(T ′

i ◦ T −1
i ) (B.16)

over M , of curvature curv(Ti ) = ρ′

i − ρi . Then we have

D̃ = (T2 ⊗ idI$
) ◦D ◦ T −1

1

∼= (T2 ◦ (T ′

2 )−1
⊗ idI$

) ◦ (T ′

2 ⊗ idI$
) ◦D ◦ (T ′

1 )−1
◦ T ′

1 ◦ T −1
1

= (T2 ◦ (T ′

2 )−1
⊗ idI$

) ◦ D̃′
◦ T ′

1 ◦ T −1
1 . (B.17)

Using the identification Bun of bundle gerbe morphisms with vector bundles and its properties (B.13) and (B.14) we
obtain

E ∼= T ∗

2 ⊗ E ′
⊗ T1. (B.18)
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We can apply this result in the following way to the bi-brane (Q,D). The pull-back of the bimodule D along the
map φS : S → Q gives a (φ∗

1G1)|S-(φ∗

2G2)|S-bimodule

φ∗

SD : (φ∗

1G1)
∣∣
S → (φ∗

2G2)
∣∣
S ⊗ Iφ∗

S$ . (B.19)

The pull-back bundle gerbes φ∗

i Gi over Σi are trivializable for dimensional reasons. A choice Ti : φ∗

i Gi → Iρ of
trivializations for 2-forms ρi on Σi produces a vector bundle over S. With this vector bundle E we define

holG1,G2,D(Σ , S) := exp
(

i
∫
Σ1

ρ1

)
exp

(
i
∫
Σ2

ρ2

)
tr(holE (S)) ∈ C (B.20)

to be the holonomy in the presence of the bi-brane (Q, E). This holonomy is the appropriate generalization of the
Wess–Zumino (45) term in situations where the simplifying assumptions on the topology of the background and the
bi-brane do not hold any longer.

This definition does not depend on the choice of the trivializations T1 and T2, as we shall now establish. For different
choices T ′

1 and T ′

2 we obtain the line bundles Ti introduced in (B.16). Since by construction we have ∂Σ1 = S and
∂Σ2 = S, and since the curvature of the bundles Ti is curv(Ti ) = ρ′

i − ρi , the holonomies of T1 and T2 around S are
given by

holT1(S) = exp
(

i
∫
Σ1

ρ′

1 − ρ1

)
and (holT2(S))−1

= exp
(

i
∫
Σ2

ρ′

2 − ρ2

)
, (B.21)

respectively. From (B.18) we obtain

tr(holE (S)) = tr(holT ∗

2 ⊗E ′⊗T1(S))

= (holT2(S))−1tr(holE ′(S))holT1(S). (B.22)

Together with (B.21) this shows the independence of number (B.20) of the choice of the trivializations.
To discuss the relation between the holonomy (B.20) and the form of the Wess–Zumino term given in Section 4,

suppose there exist three-dimensional oriented submanifolds B1 and B2 in M1 and M2, respectively, and a two-
dimensional oriented submanifold D of Q such that

∂ D = φS(S), ∂ B1 = φ1(Σ1) ∪ p1(D) and ∂ B2 = φ2(Σ2) ∪ p2(D). (B.23)

For dimensional reasons we can choose trivializations Ti : Gi |∂ Bi → Iρi of the two bundle gerbes over ∂ Bi , thus
producing a vector bundle E over D of curvature

1
n

tr(curv(E)) = $ |D + p∗

2 ρ2|D − p∗

1 ρ1|D. (B.24)

The pull-backs φ∗

i Ti : φ∗

i Gi → Iφ∗ρi are trivializations as used in the definition of the holonomy (B.20), which hence
becomes

holG1,G2,D(Σ , S) = exp
(

i
∫

φ1(Σ1)

ρ1

)
exp

(
i
∫

φ2(Σ2)

ρ2

)
tr(holE (φS(S))). (B.25)

Here the holonomy of the vector bundle E around the boundary φS(S) of D becomes by (B.24)

tr(holE (φS(S))) = tr(holE (∂ D)) = exp
(

i
∫

D
$ + p∗

2ρ2 − p∗

1ρ1

)
. (B.26)

The holonomy of the bundle gerbe Gi |∂ Bi around the closed surface ∂ Bi is, by definition,

holGi (∂ Bi ) = exp
(

i
∫

∂ Bi

ρi

)
= exp

(
i
∫

φi (Σi )

ρi ± i
∫

D
p∗

i ρi

)
(B.27)
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with a minus sign for i = 1 and a plus sign for i = 2, according to the relative orientations of D and ∂ Bi in (B.23).
On the other hand, we have

holGi (∂ Bi ) = exp
(

i
∫

Bi

Hi

)
(B.28)

with Hi the curvature of Gi . Taking the last four equalities together, we obtain

exp
(

i
∫

B1

H1 + i
∫

B2

H2 + i
∫

D
$

)
= holG1,G2,D(Σ , S). (B.29)

We conclude that the holonomy of the bi-brane does indeed specialize to the exponential of the Wess–Zumino term in
the form given in Section 4.
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